If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-24x-15=0
a = 32; b = -24; c = -15;
Δ = b2-4ac
Δ = -242-4·32·(-15)
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{39}}{2*32}=\frac{24-8\sqrt{39}}{64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{39}}{2*32}=\frac{24+8\sqrt{39}}{64} $
| 2x2-4x=÷ | | (5x+10)+(6x+5)=180° | | y/5+11=6 | | 3/5+x=0 | | 4x+6x=16 | | 9y+y=9y*2 | | 0,1x-20=30 | | 4m–8=12 | | 3^(24x+23)=0 | | 3^24x+23=0 | | 2(x-4)+x=10 | | 16x^2+1=7× | | 16x-24=8(2x-30 | | 7x/3+4/3=2x-1 | | 8b2+6=-56 | | y/9+14=8 | | 700=-1/3x+1.5 | | 8k=20+9k | | 6-3x=21x | | (3)/(5)(x-19)=-15 | | 7(r-88)=42 | | 23=z15 | | 4x+7=8+3× | | 16=-2(m-18) | | 3y+12=20=-3y | | 9-3u=-3 | | -8=3-v | | 9y=6y+4 | | 2p-20=-4 | | 1=2b-13=12-4b-2b | | 11-4d=-9 | | 2n-29=-23 |